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Abstract
Neural rendering is a class of methods that use deep learning to produce novel images of scenes from more limited information
than traditional rendering methods. This is useful for information scarce applications like mixed reality or semantic photo
synthesis but comes at the cost of control over the final appearance. We introduce the Neural Direct-illumination Renderer
(NDR), a neural screen space renderer capable of rendering direct-illumination images of any geometry, with opaque materials,
under distant illuminant. The NDR uses screen space buffers describing material, geometry, and illumination as inputs to
provide direct control over the output. We introduce the use of intrinsic image decomposition to allow a Convolutional Neural
Network (CNN) to learn a mapping from a large number of pixel buffers to rendered images. The NDR predicts shading maps,
which are subsequently combined with albedo maps to create a rendered image. We show that the NDR produces plausible
images that can be edited by modifying the input maps and marginally outperforms the state of the art while also providing
more functionality.

CCS Concepts
• Computing methodologies → Rendering; Neural networks; Supervised learning by regression;

1. Introduction

Modern rendering methods produce high quality images from de-
tailed and precise scene representations such as three dimensional
(3D) geometry, textures, and light sources. These representations
are expensive to capture and time consuming to construct manu-
ally. Neural rendering is a relatively new class of rendering methods
that circumvent this cost by leveraging deep learning in combina-
tion with capture-friendly data sources, such as colour and depth
images. Even without the explicit 3D scene understanding afforded
by traditional scene representations, neural renderers are capable
of, but not limited to, mixed reality rendering, semantic photo syn-
thesis, novel view synthesis, relighting, performance reenactament,
and volumetric rendering.

As a new field, neural rendering still has several open research
challenges. The state-of-the-art review [TFT∗20] identified con-
trollability and generaliseability as key challenges. The majority
of existing neural rendering methods are purely image based, al-
lowing no simple method for user control over the renders. Also,
many neural rendering methods are trained for one or only a few
specific cases and the cost of retraining them makes them infeasi-
ble for many real world applications.

To address these challenges, we present the Neural Direct-
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illumination Renderer (NDR), a Convolutional Neural Network
(CNN) that maps screen space buffers of geometry and material
properties and Spherical Harmonics (SH) encoded illumination to
rendered images. Screen space buffers are well known and con-
trollable representations that are significantly easier to obtain than
complete 3D scene descriptions. The required screen space buffers
can be extracted from a single image using state-of-the-art inverse
rendering methods and depth sensors. Since the NDR is condi-
tioned on so many different inputs, a single trained instance is
able to render direct-illumination images of any geometry, with any
opaque material, under any distant illuminant.

To the best of our knowledge the paper "Deep Shading"
[NAM∗17] is the only directly related work. They describe a fam-
ily of CNNs that add screen space rendering effects to direct illu-
mination renders, as well as a CNN that predicts diffuse shading
with fixed illumination from a normal buffer referred to as "Real
Shading". This is the first example of a CNN generating an image
from scratch from a screen space buffer. We expand on the sem-
inal Real Shading method by introducing dependence on albedo,
surface roughness, and illumination which enables rendering with
control over those properties with a single trained instance of our
method.

Our main contribution to achieve this is the introduction of in-
trinsic image decomposition to reduce the complexity of the map-
ping between buffers and rendered images that the CNN has to
learn. Instead of the final render, the NDR outputs diffuse and spec-
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Figure 1: Dataflow of the Neural Direct-Illumination Renderer showing how Light, Albedo, and Geometric inputs are processed to produce
a final render. "Figure of a Dancer" by Agathon Léonard [Aga] is provided by Smithsonian 3D and licensed under CC0 1.0 [Creb].

ular shading maps. These are then combined with albedo to create
the final render with simple arithmetic operations. This effectively
eliminates a known operation from the optimisation task. Repro-
duction of high frequency details in albedo is guaranteed and the
learning of shading effects is stabilised by eliminating the need for
high albedo to make them visible to the loss function.

2. Related Work

Deferred shading: Deferred shading [HH04] is a popular screen
space rendering method. In its most basic form, deferred shading
produces only direction dependant shading. Ambient occlusion and
indirect illumination can be added through screen space methods
[BS08, RGS09]. Shadows may also be added using shadow maps
[SKVW∗92] or shadow volumes [Cro77], but this requires fully
defined geometry and accurately defined illumination.

Neural Rendering: Many neural image synthesis methods have
been variably classified as novel view synthesis or image based
rendering approaches. These are methods that produce new images
of a scene based on an existing collection of observations. Kulka-
rni et al. [KWKT15] encode multiple observations as a disentan-
gled latent space that can be substituted piecewise to enact cam-
era transformations in the output. Sitzmann et al. [STH∗19] and
Nguyen et al. [NPLT∗19] use 3D convolutions to allow transforma-
tions to be applied directly to the latent space. Aliev et al. [AUL19]
project observations into point clouds of neural features that can
be reprojected before decoding to create novel views. Meshry et
al. [MGK∗19] use point clouds and additionally handle varying
lighting conditions and partial occlusions in input images. Thies
et al. [TZN19] and Chen et al. [CCZ∗20] encode multiple obser-
vations into neural textures that can be transformed to create novel
views and geometric distortions. Lombadri et al. [LSSS18,LSS∗19]
reconstruct faces from few precisely calibrated camera views of the
face. Unlike image based rendering, the input buffers of our method
can be edited directly to enact a change in shape, material, or illu-
mination.

CNNs have been applied to image relighting. Meka et al.
[MPH∗20] encode light stage observations into neural textures to
achieve free viewpoint relighting. Xu et al. [XSHR18] learn op-
timal samples to relight images with accurate view dependant ef-

fects. Sun et al. [SBT∗19] achieve single image relighting for por-
trait images.

There is a limited body of existing work that mimics the be-
haviour of traditional renderers, mapping traditional scene descrip-
tions to images. Nguyen et al. [NPLBY18] use a novel projection
unit to map a voxel grid to diffuse shading. Rematas et al. [RF19]
map a voxel grid to images featuring cast shadows, reflections,
and spatially varying materials. This impressive result is based on
fully defined scene geometry under point lighting. Our method
aims to function with partial geometry under area lighting. Li et
al. [LXR∗18] render global illumination by using stacked networks
to predict subsequent bounces of light from direct illumination im-
ages and deferred buffers. Nalbach et al. [NAM∗17] describe a fam-
ily of CNNs that add screen space rendering effects to direct illu-
mination renders as well as Real Shading, a CNN that maps screen
space normals to diffuse shading. Our method builds on this work
to handle specular materials and variable illumination at inference
time.

3. Method

3.1. Network Structure

The aim of our method is to render direct illumination images, in-
cluding occlusion based effects, from single viewpoint screen space
information. Inspired by the success of deep learning methods at
various image generation tasks, we propose the Neural Direct-
illumination Renderer (NDR), a novel CNN for mapping these
unique inputs to shading maps. Formally, given normals N, rough-
ness R, a depth image D, approximate diffuse SD and specular SS
shading, and SH coefficients for illumination L the NDR, denoted
as r(.), estimates specular shading map IS and diffuse shading map
ID:

NDR : r({N,R,D,L,SD,SS})→{IS, ID} (1)

An image is rendered from these shading maps by multiplying
them with their respective albedos, as per the intrinsic image model
[BTHR78]. Formally:

IR = IS ∗AS + ID ∗AD (2)

where IR is the rendered image and AS, and AD are the specular and
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Figure 2: Detailed network structure of the Neural Direct-Illumination Renderer. The W, H values given are those used during our experi-
ments. The W, H values could be varied arbitrarily without modification of the network structure as it is fully convolutional.

diffuse albedo maps respectively. The dataflow of our rendering
pipeline is illustrated in Figure 1.

The coarse shading maps SD and SS are generated by considering
each pixel a lone point in space, ignoring all occlusions, because
the full 3D context is not available. SD and SS are calculated by
importance sampling the the lambertian and GGX BRDFs with 64
samples per pixel. A low sample count and a 32x16px radiance
map are used to ensure the execution is fast enough to train with
and to simulate that detailed illumination may not be available in
single view point input scenarios. We similarly justify the choice of
spherical harmonics.

The NDR is a U-Net [RFB15] with two modifications; a sec-
ond decoder, and injection of illumination information into the bot-
tleneck. The second decoder is just a parallel copy of the normal
U-net decoder that shares the same bottleneck and skip link in-
puts. Illumination is encoded as a vector of 75 SH coefficients. The
entirety of the illumination information must be available to ev-
ery pixel in the output. This is done by passing the vector through
two fully connected layers and depth-wise concatenating the resul-
tant feature vector to every spatial position of the bottleneck in-
put. We define the tensor passed to the normal U-net encoder as
TO : {N,R,D,SD,SS} and the tensor passed to the illumination en-
coder as TI : {L}. The detailed network architecture is illustrated in
Figure 2. Note that the output layers feature a sigmoid activation.
The inverse tone mapping operator −I/(I− 1) is used to map the
outputs to HDR shading maps.

3.2. Dataset

To train the NDR we require a dataset of direct illumination ren-
ders, shading maps, and parameter buffers of objects to render. We

procedurally generate these objects by combining height mapped
primitive shapes in the manner of Xu et al. [XSHR18] and Li et
al. [LXR∗18]. The objects are textured with random crops taken
from the texture dataset provided by Deschaintre et al. [DAD∗18].
The objects are illuminated by radiance maps taken from the Laval
Indoor dataset [GSY∗17]. We render our datasets with PBRT-
v3 [PJH16] with an implementation of the Cook-Torrance model
with GGX distributions described by Karis [KG13]. We use masks
for loss calculations, which are generated by converting depth maps
to binary masks and applying morphological erosion. We generate
60,000 training samples and multiple sets of 1,200 testing samples.

3.3. Training

The NDR is trained end-to-end in a supervised manner with the loss
function L = Ld +Ls +Lr, where Ld , Ls, and Lr are the Struc-
tural Dissimilarity (DSSIM) [WBSS04] loss on the diffuse shading,
specular shading, and final rendered image. The shading maps are
separately supervised to ensure that strong gradients are provided
to each decoder during each training step, irrespective of how little
that shading component contributes to the final image. To stabilise
training, all inputs and targets with unbounded value ranges (depth
and all shading maps) are remapped to the range [0,1] with Rein-
hard tone mapping [RSSF02]. We train the network for 40 epochs
using the Adam optimiser [KB14] with a fixed learning rate of 1e-
4 and batch size of 16 using an NVIDIA Quadro RTX 6000. This
took approximately 15 hours.

Once trained, evaluating the entire pipeline takes approximately
0.046 seconds with, and 0.006 seconds without including the time
to generate the coarse shading maps. The fast execution and trivial
differentiability of the NDR may be useful in applications such as
interactive mixed reality and render loss driven optimisations.
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Figure 3: Comparison of images rendered by the NDR to the path traced ground truth when changing material (a-c), illumination (d), and
geometry (e). The changes in input are shown below each example.
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Figure 4: Abridged network structures of ablated NDR variants.
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Figure 5: Comparison of images rendered by the NDR and its ab-
lated variants without intrinsic image decomposition and shading
input.

4. Experiments

In this section we demonstrate the efficacy of the NDR as a ren-
derer, support the choice of intrinsic image decomposition with an
ablation study, and evaluate it against the preceding Real Shading.

4.1. Functionality

As a renderer the NDR must be able to evaluate the interaction
of light, material and geometry. We demonstrate this with a series
of qualitative examples of how the NDR responds to changes in

Table 1: Mean L2 and DSSIM errors of the NDR and its ablated
variants.

L2 DSSIM
NDR 0.00017 0.0031
Decoder Sep. Abl. 0.00017 0.0031
Intrinsic Img. Abl. 0.00087 0.0970
Shading Input Abl. 0.00017 0.0035
SH Input Abl. 0.00018 0.0045
Depth Input Abl. 0.00017 0.0037

input in Figure 3. Note the high frequency albedo, sharp specular
highlights, and plausible self occlusion.

4.2. Ablation

We conduct a structural ablation to show the efficacy of our main
contribution, the use of an intrinsic image formulation. We first ab-
late the separation of the decoders, replacing them with a single
decoder with twice the number of output channels per level. We
then ablate the intrinsic image formulation by additionally append-
ing albedos to To, targeting IR directly. These ablated structures are
shown in Figure 4. Quantitative results are given in Table 1. Ablat-
ing the decoder separation causes no significant degradation but in-
creases the number of weights by 9%. This shows that the shading
components can be reasoned about separately and enforcing this
in the network structure improves the representational efficiency.
Ablating the intrinsic image formulation causes the NDR to not
converge. Albedo causes a large amount of the variance in target
images, and the learning of a near identity transform is required
to create a good enough baseline to stably optimise for shading
effects. However, without significant modifications to the training
procedure shading effects are significant enough to interfere with
the learning of said near identity transform. Therefore, the ablated
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Figure 6: Comparison of images rendered by the NDR and compa-
rable methods under fixed illumination. The same object is shown
with a material that is purely diffuse, purely specular, and a mix-
ture of both. The model "Decorative Vase" by fresherator2 [fre20]
is licensed under CC BY 4.0 [Crea].

Table 2: Mean L2 and DSSIM errors of the NDR and comparable
methods over our two test datasets.

Diffuse Material Complex Material
Fixed Illumination Varying Illumination
L2 DSSIM L2 DSSIM

NDR 0.00029 0.0109 0.00017 0.0031
Real Shading 0.00093 0.0231 N/A N/A
pix2pix 1.22490 0.4051 0.00045 0.0200
Shading Input 0.00171 0.0814 0.00032 0.0240
Projection Meshing 0.00024 0.0253 0.00018 0.0189

NDR achieves only vague indications of shading and loses struc-
ture due to albedo, see Figure 5.

We additionally conduct a data ablation to demonstrate that po-
tentially redundant inputs provide useful information. Shading and
SH inputs both encode directional illumination, but removing either
reduces numerical accuracy by 12% and 45% respectively. While it
has a smaller numerical effect, the shading input is key for creating
correctly shaped highlights, see Figure 5. Normal and depth inputs
are theoretically redundant as they are related by an integral. Nor-
mal input is required to generate the shading input and cannot be
ablated. Ablating depth input reduces numerical accuracy by 19%,
likely due to reduced ability to reason about occlusions.

4.3. Evaluation

Given that we are expanding the functionality of the first example
of a CNN based screen space rendering pipeline there is no di-
rect point of comparison. We compare to Real Shading [NAM∗17]
itself to verify that the increased input space has not degraded
performance, pix2pix [IZZE17] to show the benefits of our spe-
cialised architecture over a generic one, the shading input to show
the NDR is not just an expensive identity mapping, and path traced

renders of meshes constructed by projecting screen space depth
maps [PCR18]. All methods receive identical inputs of 256x256px
buffers and 32x16px/75 SH coefficients. Our light encoder was
added to pix2pix to allow for variable illumination experiments.
We compare over two datasets. One consists of untextured diffuse
objects suitable for evaluating Real Shading. The other consist of
textured objects under variable illumination.

Quantitative results are given in Table 2. A qualitative example
is given in Figure 6. The NDR numerically outperforms Real Shad-
ing, even with a larger input space. Both produce visually plausible
renders but Real Shading does not account for specular materials.
pix2pix has an order of magnitude greater DSSIM error than the
NDR due to its lack of task specific design. Without intrinsic im-
age decomposition the diffuse and specular contributions become
entangled, e.g. the exemplar vase rendered with both specular and
diffuse contributions is significantly brighter than the sum of the
separately predicted components. As expected, the shading input
performs poorly due to its lack of occlusions and limited quality
inputs. The low resolution radiance map and lack of smoothing
from considering each surface point in isolation results in exces-
sively sharp discontinuities in shading. The NDR significantly im-
proves on its input. Generating a mesh by projecting the vertices of
a plane mesh along view vectors based on a depth map has many
obvious failure cases where depth discontinuities are erroneously
connected or object edges being projected to infinity causes excess
occlusions. These failure cases are significant enough that the NDR
numerically outperforms this method, even though the expensive
process of path tracing provides very accurate evaluation of unoc-
cluded points. Such a meshing method is also vulnerable to noise,
e.g. the scan of the exemplar vase features just one tiny depth map
error that still causes a noticeable artefact. Their layered spatial fil-
tering operations make CNNs, such as the NDR, resilient to such
noise.

5. Conclusion

We present the Neural Direct-illumination Renderer, a method for
rendering images of arbitrary objects under distant illumination
from screen space buffers. The NDR offers a controllable and gen-
eralised alternative to traditional rendering approaches when only
partial scene descriptions of limited quality are available. The NDR
currently cannot evaluate multiple light-material interactions but
auxiliary methods such as GINet [LXR∗18] may be appended to
add such functionality. By leveraging intrinsic image image forma-
tion our novel Convolutional Neural Network architecture outper-
forms and offers a greater range of functionality than the current
state of the art. The render quality of the NDR may be further im-
proved in future with access to real training data.

6. Acknowledgments

This project was funded by the Smart Ideas Endeavour Fund from
MBIE and in part by the Entrepreneurial University Programme
from TEC in New Zealand.

References
[Aga] AGATHON LÉONARD: "figure of a dancer" ac-

cessed jun., 2020. Smithsonian 3D. URL: https:

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

https://3d.si.edu/object/3d/figure-dancer:88de08dd-b8ab-470a-b987-ed6fe35def04


C. Suppan et al. / Neural Screen Space Rendering of Direct Illumination

//3d.si.edu/object/3d/figure-dancer:
88de08dd-b8ab-470a-b987-ed6fe35def04. 2

[AUL19] ALIEV K.-A., ULYANOV D., LEMPITSKY V.: Neural point-
based graphics. arXiv preprint arXiv:1906.08240 (2019). 2

[BS08] BAVOIL L., SAINZ M.: Screen space ambient occlusion. NVIDIA
developer information: http://developers. nvidia. com 6 (2008). 2

[BTHR78] BARROW H., TENENBAUM J., HANSON A., RISEMAN E.:
Recovering intrinsic scene characteristics. Comput. Vis. Syst 2, 3-26
(1978), 2. 2

[CCZ∗20] CHEN Z., CHEN A., ZHANG G., WANG C., JI Y., KUTU-
LAKOS K. N., YU J.: A neural rendering framework for free-viewpoint
relighting. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (2020), pp. 5599–5610. 2

[Crea] CREATIVE COMMONS: "creative commons legal code cc by 4.0"
accessed dec., 2020. URL: https://creativecommons.org/
licenses/by/4.0/legalcode. 5

[Creb] CREATIVE COMMONS: "creative commons legal code cc0 1.0"
accessed dec., 2020. URL: https://creativecommons.org/
publicdomain/zero/1.0/legalcode. 2

[Cro77] CROW F. C.: Shadow algorithms for computer graphics. Acm
siggraph computer graphics 11, 2 (1977), 242–248. 2

[DAD∗18] DESCHAINTRE V., AITTALA M., DURAND F., DRETTAKIS
G., BOUSSEAU A.: Single-image svbrdf capture with a rendering-aware
deep network. ACM Transactions on Graphics (ToG) 37, 4 (2018), 1–15.
3

[fre20] FRESHERATOR2: Decorative vase. Sketchfab,
2020. URL: https://sketchfab.com/3d-models/
decorative-vase-fd455b8cb6da4cb0b4548a0f2e74ddfe.
5

[GSY∗17] GARDNER M.-A., SUNKAVALLI K., YUMER E., SHEN X.,
GAMBARETTO E., GAGNÉ C., LALONDE J.-F.: Learning to predict in-
door illumination from a single image. arXiv preprint arXiv:1704.00090
(2017). 3

[HH04] HARGREAVES S., HARRIS M.: Deferred shading. In Game De-
velopers Conference (2004), vol. 2, p. 31. 2

[IZZE17] ISOLA P., ZHU J.-Y., ZHOU T., EFROS A. A.: Image-to-
image translation with conditional adversarial networks. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition
(2017), pp. 1125–1134. 5

[KB14] KINGMA D. P., BA J.: Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980 (2014). 3

[KG13] KARIS B., GAMES E.: Real shading in unreal engine 4. Proc.
Physically Based Shading Theory Practice 4 (2013). 3

[KWKT15] KULKARNI T. D., WHITNEY W. F., KOHLI P., TENEN-
BAUM J.: Deep convolutional inverse graphics network. In Advances
in neural information processing systems (2015), pp. 2539–2547. 2

[LSS∗19] LOMBARDI S., SIMON T., SARAGIH J., SCHWARTZ G.,
LEHRMANN A., SHEIKH Y.: Neural volumes: Learning dynamic ren-
derable volumes from images. ACM Transactions on Graphics (TOG)
38, 4 (2019), 65. 2

[LSSS18] LOMBARDI S., SARAGIH J., SIMON T., SHEIKH Y.: Deep
appearance models for face rendering. ACM Transactions on Graphics
(TOG) 37, 4 (2018), 1–13. 2

[LXR∗18] LI Z., XU Z., RAMAMOORTHI R., SUNKAVALLI K., CHAN-
DRAKER M.: Learning to reconstruct shape and spatially-varying re-
flectance from a single image. ACM Transactions on Graphics (TOG)
37, 6 (2018), 1–11. 2, 3, 5

[MGK∗19] MESHRY M., GOLDMAN D. B., KHAMIS S., HOPPE H.,
PANDEY R., SNAVELY N., MARTIN-BRUALLA R.: Neural rerendering
in the wild. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (2019), pp. 6878–6887. 2

[MPH∗20] MEKA A., PANDEY R., HÄNE C., ORTS-ESCOLANO S.,
BARNUM P., DAVID-SON P., ERICKSON D., ZHANG Y., TAYLOR J.,
BOUAZIZ S., ET AL.: Deep relightable textures: volumetric performance
capture with neural rendering. ACM Transactions on Graphics (TOG)
39, 6 (2020), 1–21. 2

[NAM∗17] NALBACH O., ARABADZHIYSKA E., MEHTA D., SEIDEL
H.-P., RITSCHEL T.: Deep shading: convolutional neural networks for
screen space shading. In Computer graphics forum (2017), vol. 36, Wiley
Online Library, pp. 65–78. 1, 2, 5

[NPLBY18] NGUYEN-PHUOC T. H., LI C., BALABAN S., YANG Y.:
Rendernet: A deep convolutional network for differentiable rendering
from 3d shapes. In Advances in Neural Information Processing Systems
(2018), pp. 7891–7901. 2

[NPLT∗19] NGUYEN-PHUOC T., LI C., THEIS L., RICHARDT C.,
YANG Y.-L.: Hologan: Unsupervised learning of 3d representations
from natural images. In Proceedings of the IEEE International Con-
ference on Computer Vision (2019), pp. 7588–7597. 2

[PCR18] PETIKAM L., CHALMERS A., RHEE T.: Visual perception of
real world depth map resolution for mixed reality rendering. In 2018
IEEE Conference on Virtual Reality and 3D User Interfaces (VR) (2018),
pp. 401–408. 5

[PJH16] PHARR M., JAKOB W., HUMPHREYS G.: Physically based ren-
dering: From theory to implementation. Morgan Kaufmann, 2016. 3

[RF19] REMATAS K., FERRARI V.: Neural voxel renderer: Learn-
ing an accurate and controllable rendering tool. arXiv preprint
arXiv:1912.04591 (2019). 2

[RFB15] RONNEBERGER O., FISCHER P., BROX T.: U-net: Convolu-
tional networks for biomedical image segmentation. In International
Conference on Medical image computing and computer-assisted inter-
vention (2015), Springer, pp. 234–241. 3

[RGS09] RITSCHEL T., GROSCH T., SEIDEL H.-P.: Approximating dy-
namic global illumination in image space. In Proceedings of the 2009
symposium on Interactive 3D graphics and games (2009), pp. 75–82. 2

[RSSF02] REINHARD E., STARK M., SHIRLEY P., FERWERDA J.: Pho-
tographic tone reproduction for digital images. In Proceedings of the
29th annual conference on Computer graphics and interactive tech-
niques (2002), pp. 267–276. 3

[SBT∗19] SUN T., BARRON J. T., TSAI Y.-T., XU Z., YU X., FYFFE
G., RHEMANN C., BUSCH J., DEBEVEC P., RAMAMOORTHI R.: Sin-
gle image portrait relighting. ACM Transactions on Graphics (Proceed-
ings SIGGRAPH) (2019). 2

[SKVW∗92] SEGAL M., KOROBKIN C., VAN WIDENFELT R., FORAN
J., HAEBERLI P.: Fast shadows and lighting effects using texture map-
ping. In Proceedings of the 19th annual conference on Computer graph-
ics and interactive techniques (1992), pp. 249–252. 2

[STH∗19] SITZMANN V., THIES J., HEIDE F., NIESSNER M., WET-
ZSTEIN G., ZOLLHOFER M.: Deepvoxels: Learning persistent 3d fea-
ture embeddings. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (2019), pp. 2437–2446. 2

[TFT∗20] TEWARI A., FRIED O., THIES J., SITZMANN V., LOMBARDI
S., SUNKAVALLI K., MARTIN-BRUALLA R., SIMON T., SARAGIH J.,
NIESSNER M., ET AL.: State of the art on neural rendering. arXiv
preprint arXiv:2004.03805 (2020). 1

[TZN19] THIES J., ZOLLHÖFER M., NIESSNER M.: Deferred neural
rendering: Image synthesis using neural textures. ACM Transactions on
Graphics (TOG) 38, 4 (2019), 1–12. 2

[WBSS04] WANG Z., BOVIK A. C., SHEIKH H. R., SIMONCELLI E. P.:
Image quality assessment: from error visibility to structural similarity.
IEEE transactions on image processing 13, 4 (2004), 600–612. 3

[XSHR18] XU Z., SUNKAVALLI K., HADAP S., RAMAMOORTHI R.:
Deep image-based relighting from optimal sparse samples. ACM Trans-
actions on Graphics (TOG) 37, 4 (2018), 1–13. 2, 3

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

https://3d.si.edu/object/3d/figure-dancer:88de08dd-b8ab-470a-b987-ed6fe35def04
https://3d.si.edu/object/3d/figure-dancer:88de08dd-b8ab-470a-b987-ed6fe35def04
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/publicdomain/zero/1.0/legalcode
https://creativecommons.org/publicdomain/zero/1.0/legalcode
https://sketchfab.com/3d-models/decorative-vase-fd455b8cb6da4cb0b4548a0f2e74ddfe
https://sketchfab.com/3d-models/decorative-vase-fd455b8cb6da4cb0b4548a0f2e74ddfe

